Extensions 1→N→G→Q→1 with N=D4xC32 and Q=C22

Direct product G=NxQ with N=D4xC32 and Q=C22
dρLabelID
D4xC62144D4xC6^2288,1019

Semidirect products G=N:Q with N=D4xC32 and Q=C22
extensionφ:Q→Out NdρLabelID
(D4xC32):1C22 = S3xD4:S3φ: C22/C1C22 ⊆ Out D4xC32488+(D4xC3^2):1C2^2288,572
(D4xC32):2C22 = Dic6:3D6φ: C22/C1C22 ⊆ Out D4xC32488+(D4xC3^2):2C2^2288,573
(D4xC32):3C22 = D12:D6φ: C22/C1C22 ⊆ Out D4xC32248+(D4xC3^2):3C2^2288,574
(D4xC32):4C22 = D12.D6φ: C22/C1C22 ⊆ Out D4xC32488-(D4xC3^2):4C2^2288,575
(D4xC32):5C22 = C3xS3xD8φ: C22/C1C22 ⊆ Out D4xC32484(D4xC3^2):5C2^2288,681
(D4xC32):6C22 = C3xD8:S3φ: C22/C1C22 ⊆ Out D4xC32484(D4xC3^2):6C2^2288,682
(D4xC32):7C22 = D8xC3:S3φ: C22/C1C22 ⊆ Out D4xC3272(D4xC3^2):7C2^2288,767
(D4xC32):8C22 = C24:8D6φ: C22/C1C22 ⊆ Out D4xC3272(D4xC3^2):8C2^2288,768
(D4xC32):9C22 = S32xD4φ: C22/C1C22 ⊆ Out D4xC32248+(D4xC3^2):9C2^2288,958
(D4xC32):10C22 = S3xD4:2S3φ: C22/C1C22 ⊆ Out D4xC32488-(D4xC3^2):10C2^2288,959
(D4xC32):11C22 = Dic6:12D6φ: C22/C1C22 ⊆ Out D4xC32248+(D4xC3^2):11C2^2288,960
(D4xC32):12C22 = D12:12D6φ: C22/C1C22 ⊆ Out D4xC32488-(D4xC3^2):12C2^2288,961
(D4xC32):13C22 = D12:13D6φ: C22/C1C22 ⊆ Out D4xC32248+(D4xC3^2):13C2^2288,962
(D4xC32):14C22 = C6xD4:S3φ: C22/C2C2 ⊆ Out D4xC3248(D4xC3^2):14C2^2288,702
(D4xC32):15C22 = C3xD4:D6φ: C22/C2C2 ⊆ Out D4xC32484(D4xC3^2):15C2^2288,720
(D4xC32):16C22 = C2xC32:7D8φ: C22/C2C2 ⊆ Out D4xC32144(D4xC3^2):16C2^2288,788
(D4xC32):17C22 = C62.73D4φ: C22/C2C2 ⊆ Out D4xC3272(D4xC3^2):17C2^2288,806
(D4xC32):18C22 = S3xC6xD4φ: C22/C2C2 ⊆ Out D4xC3248(D4xC3^2):18C2^2288,992
(D4xC32):19C22 = C6xD4:2S3φ: C22/C2C2 ⊆ Out D4xC3248(D4xC3^2):19C2^2288,993
(D4xC32):20C22 = C3xD4:6D6φ: C22/C2C2 ⊆ Out D4xC32244(D4xC3^2):20C2^2288,994
(D4xC32):21C22 = C3xS3xC4oD4φ: C22/C2C2 ⊆ Out D4xC32484(D4xC3^2):21C2^2288,998
(D4xC32):22C22 = C3xD4oD12φ: C22/C2C2 ⊆ Out D4xC32484(D4xC3^2):22C2^2288,999
(D4xC32):23C22 = C2xD4xC3:S3φ: C22/C2C2 ⊆ Out D4xC3272(D4xC3^2):23C2^2288,1007
(D4xC32):24C22 = C2xC12.D6φ: C22/C2C2 ⊆ Out D4xC32144(D4xC3^2):24C2^2288,1008
(D4xC32):25C22 = C32:82+ 1+4φ: C22/C2C2 ⊆ Out D4xC3272(D4xC3^2):25C2^2288,1009
(D4xC32):26C22 = C4oD4xC3:S3φ: C22/C2C2 ⊆ Out D4xC3272(D4xC3^2):26C2^2288,1013
(D4xC32):27C22 = C62.154C23φ: C22/C2C2 ⊆ Out D4xC3272(D4xC3^2):27C2^2288,1014
(D4xC32):28C22 = D8xC3xC6φ: C22/C2C2 ⊆ Out D4xC32144(D4xC3^2):28C2^2288,829
(D4xC32):29C22 = C32xC8:C22φ: C22/C2C2 ⊆ Out D4xC3272(D4xC3^2):29C2^2288,833
(D4xC32):30C22 = C4oD4xC3xC6φ: trivial image144(D4xC3^2):30C2^2288,1021
(D4xC32):31C22 = C32x2+ 1+4φ: trivial image72(D4xC3^2):31C2^2288,1022

Non-split extensions G=N.Q with N=D4xC32 and Q=C22
extensionφ:Q→Out NdρLabelID
(D4xC32).1C22 = S3xD4.S3φ: C22/C1C22 ⊆ Out D4xC32488-(D4xC3^2).1C2^2288,576
(D4xC32).2C22 = Dic6.19D6φ: C22/C1C22 ⊆ Out D4xC32488-(D4xC3^2).2C2^2288,577
(D4xC32).3C22 = Dic6:D6φ: C22/C1C22 ⊆ Out D4xC32248+(D4xC3^2).3C2^2288,578
(D4xC32).4C22 = Dic6.D6φ: C22/C1C22 ⊆ Out D4xC32488-(D4xC3^2).4C2^2288,579
(D4xC32).5C22 = D12:9D6φ: C22/C1C22 ⊆ Out D4xC32488-(D4xC3^2).5C2^2288,580
(D4xC32).6C22 = D12.22D6φ: C22/C1C22 ⊆ Out D4xC32488-(D4xC3^2).6C2^2288,581
(D4xC32).7C22 = D12.7D6φ: C22/C1C22 ⊆ Out D4xC32488+(D4xC3^2).7C2^2288,582
(D4xC32).8C22 = Dic6.20D6φ: C22/C1C22 ⊆ Out D4xC32488+(D4xC3^2).8C2^2288,583
(D4xC32).9C22 = D12.8D6φ: C22/C1C22 ⊆ Out D4xC32488-(D4xC3^2).9C2^2288,584
(D4xC32).10C22 = D12:5D6φ: C22/C1C22 ⊆ Out D4xC32248+(D4xC3^2).10C2^2288,585
(D4xC32).11C22 = C3xD8:3S3φ: C22/C1C22 ⊆ Out D4xC32484(D4xC3^2).11C2^2288,683
(D4xC32).12C22 = C3xS3xSD16φ: C22/C1C22 ⊆ Out D4xC32484(D4xC3^2).12C2^2288,684
(D4xC32).13C22 = C3xQ8:3D6φ: C22/C1C22 ⊆ Out D4xC32484(D4xC3^2).13C2^2288,685
(D4xC32).14C22 = C3xD4.D6φ: C22/C1C22 ⊆ Out D4xC32484(D4xC3^2).14C2^2288,686
(D4xC32).15C22 = C3xQ8.7D6φ: C22/C1C22 ⊆ Out D4xC32484(D4xC3^2).15C2^2288,687
(D4xC32).16C22 = C24.26D6φ: C22/C1C22 ⊆ Out D4xC32144(D4xC3^2).16C2^2288,769
(D4xC32).17C22 = SD16xC3:S3φ: C22/C1C22 ⊆ Out D4xC3272(D4xC3^2).17C2^2288,770
(D4xC32).18C22 = C24:7D6φ: C22/C1C22 ⊆ Out D4xC3272(D4xC3^2).18C2^2288,771
(D4xC32).19C22 = C24.32D6φ: C22/C1C22 ⊆ Out D4xC32144(D4xC3^2).19C2^2288,772
(D4xC32).20C22 = C24.40D6φ: C22/C1C22 ⊆ Out D4xC32144(D4xC3^2).20C2^2288,773
(D4xC32).21C22 = Dic6.24D6φ: C22/C1C22 ⊆ Out D4xC32488-(D4xC3^2).21C2^2288,957
(D4xC32).22C22 = C3xD12:6C22φ: C22/C2C2 ⊆ Out D4xC32244(D4xC3^2).22C2^2288,703
(D4xC32).23C22 = C6xD4.S3φ: C22/C2C2 ⊆ Out D4xC3248(D4xC3^2).23C2^2288,704
(D4xC32).24C22 = C3xQ8.13D6φ: C22/C2C2 ⊆ Out D4xC32484(D4xC3^2).24C2^2288,721
(D4xC32).25C22 = C3xQ8.14D6φ: C22/C2C2 ⊆ Out D4xC32484(D4xC3^2).25C2^2288,722
(D4xC32).26C22 = C62.131D4φ: C22/C2C2 ⊆ Out D4xC3272(D4xC3^2).26C2^2288,789
(D4xC32).27C22 = C2xC32:9SD16φ: C22/C2C2 ⊆ Out D4xC32144(D4xC3^2).27C2^2288,790
(D4xC32).28C22 = C62.74D4φ: C22/C2C2 ⊆ Out D4xC32144(D4xC3^2).28C2^2288,807
(D4xC32).29C22 = C62.75D4φ: C22/C2C2 ⊆ Out D4xC32144(D4xC3^2).29C2^2288,808
(D4xC32).30C22 = C3xQ8oD12φ: C22/C2C2 ⊆ Out D4xC32484(D4xC3^2).30C2^2288,1000
(D4xC32).31C22 = C32:92- 1+4φ: C22/C2C2 ⊆ Out D4xC32144(D4xC3^2).31C2^2288,1015
(D4xC32).32C22 = SD16xC3xC6φ: C22/C2C2 ⊆ Out D4xC32144(D4xC3^2).32C2^2288,830
(D4xC32).33C22 = C32xC4oD8φ: C22/C2C2 ⊆ Out D4xC32144(D4xC3^2).33C2^2288,832
(D4xC32).34C22 = C32xC8.C22φ: C22/C2C2 ⊆ Out D4xC32144(D4xC3^2).34C2^2288,834
(D4xC32).35C22 = C32x2- 1+4φ: trivial image144(D4xC3^2).35C2^2288,1023

׿
x
:
Z
F
o
wr
Q
<